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A Monte Carlo procedure is described that generates random

structure factors with simulated errors corresponding to an

X-ray data set of a protein of a specific size and given heavy-

atom content. The simulated data set can be used to estimate

Bijvoet ratios and figures of merit as obtained from SAD

phasing routines and can be used to gauge the feasibility of

solving a structure via the SAD method. In addition to being

able to estimate results from phasing, the simulation allows the

estimation of the correlation coefficient between |�F|, the

absolute Bijvoet amplitude difference, and FA, the structure-

factor amplitude of the heavy-atom model. As this quantity is

used in various substructure-solution routines, the estimate

provides a rough estimate of the ease of substructure solution.

Furthermore, the Monte Carlo procedure provides an easy

way of estimating the number of significant Bijvoet intensity

differences, denoted as the measurability, and is proposed as

an intuitive measure of the quality of anomalous data.
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1. Introduction

Structure solution by the single-wavelength anomalous

diffraction (SAD) method has become increasingly popular

over the last couple of years (e.g. Dauter et al., 2002; Dodson,

2003; Olczak et al., 2003; Yang et al., 2003). This increase in

popularity can be largely ascribed to the improvement and

increasing availability of diffraction data-collection facilities

(e.g. Cassetta et al., 1999; Fourme et al., 1999; Helliwell, 1992;

Hendrickson, 1999; Pohl et al., 2001), new and improved data-

collection procedures (e.g. Alkire et al., 2004; Weiss, Sicker,

Djinovic Carugo et al., 2001) and novel theoretical develop-

ments implemented in user-friendly software (e.g. de La

Fortelle & Bricogne, 1997; Pannu & Read, 2004; Schneider &

Sheldrick, 2002; Terwilliger, 2003; Weeks & Miller, 1999).

SAD phasing relies on the presence of ‘anomalously’ scat-

tering atoms that cause the violation of Friedel’s Law. The

differences in Bijvoet-related intensities, the so-called anom-

alous differences, are used for substructure solution and

subsequent phasing. As these differences are expected to be

only a small fraction of the total signal for each reflection,

accurate measurements and a proper statistical treatment of

the errors are vital for a successful structure-solution process.

If accurate data are available, Wang (1985) predicted that data

sets with a Bijvoet amplitude ratio (h�Fi/hFi) as low as 0.6%

would be solvable by the SAD method and this has recently

been confirmed experimentally (Banumathi et al., 2004;

Ramagopal et al., 2003). Although the expected Bijvoet

amplitude ratio is a useful quantity indicating the expected

amount of anomalous difference on the amplitudes, it does not

show in a straightforward manner what the results of a

successful phasing procedure would be. Furthermore, the
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crystallographic experiment records intensities rather than

amplitudes, so the Bijvoet intensity ratio would be a quantity

that is more closely related to the experiment. A major

drawback of both the amplitude and intensity ratios is that

they are relatively sensitive to experimental errors, dimin-

ishing the practical use of these indicators for assessing the

strength of the anomalous signal in a given data set.

In the following sections of this report, a number of classical

anomalous difference indicators are reviewed. A number of

these indicators, given some characteristics of a data set, will

be computed numerically via a Monte Carlo simulation and

compared with the estimates obtained via their theoretical

expressions. A major benefit of the simulation procedure over

the theoretical expressions is that in addition to being able to

directly investigate the effects of errors on various anomalous

signal indicators, the expected cosine of the phase error after

SAD phasing can be computed. The expected cosine of the

phase error is related to the information content of the phase

probability distributions and will thus give a much clearer

indication whether or not a particular SAD phasing scenario is

feasible. Another advantage is that the correlation coefficient

between the normalized (Giacovazzo, 2001) values of �F and

FA can be obtained easily. This correlation coefficient can be

used as an indicator of the ease of the substructure-solution

process.

2. Terminology and notation

Some confusion in the (protein) crystallographic literature is

present with regards to the term Bijvoet ratio. In papers from

S. Parthasarathy and coworkers (e.g. Parthasarathy, 1967;

Parthasarathy & Parthasarathi, 1973), the term ‘Bijvoet ratio’

was reserved for the Bijvoet intensity difference divided by

the average of Friedel-related intensities. In the more recent

literature, however, amplitudes are used. Furthermore, the

term ‘expected Bijvoet ratio’ in early papers refers to the

expected value of the ratio, whereas in the more recent

literature the term ‘expected Bijvoet ratio’ is used for the ratio

of expectation values. These different Bijvoet ratios are of

course all related. To overcome these difficulties in nomen-

clature, the term Bijvoet intensity ratio or Bijvoet amplitude

ratio will be used as well as a referral to the expressions in

order to avoid confusion.

Expectation values will be denoted by E½gðxÞ�x, indicating

that the expectation value of the function g(x) is obtained by

integrating the probability distribution of x multiplied by g(x).

Table 1 summarizes the symbols used in this text.

3. Anomalous signal indicators

A number of indicators have been developed to assess or

predict the expected anomalous signal within a data set. They

will be briefly reviewed in the following sections.

3.1. The Bijvoet amplitude ratio

The expectation value of the ratio of the root of the mean-

square absolute Bijvoet amplitude difference and the root of

the mean-square amplitude has been deduced by Hendrickson

& Teeter (1981) using a zero diffraction-angle approximation

(see also Hendrickson et al., 1985; Hendrickson & Ogata,

1997). Dauter et al. (2002) introduced angular dependence

into this estimate and showed a good fit to experimental data

at low resolution. A difference in atomic displacement para-

meters between the protein atoms and the heavy-atom model

as well as a modulating term describing effects arising from

geometric regularities in the heavy-atom model was incorpo-

rated in the Bijvoet amplitude ratio estimate by Shen et al.

(2003). A drawback of the expression of Shen and coworkers

is the lack of the incorporation of the effects of structural

regularities in the protein model and its effect on the average

intensity as well as a number of issues in the published deri-

vation, most of which have to do with the fact that the

expectation value of a function of a random variable is not

equal to the function of the expectation value of the random

variable. A re-derivation of the expression published by Shen

et al. (2003) results in (see Appendix A)
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Table 1
Notation.

Symbol Meaning

E½gðxÞ�x Expectation value of g(x), with x as the random variable
hg(x)i Population average of g(x); ð1=MÞPM

j¼1 gðxjÞ
Fþ, F� Friedel-related amplitudes
�F Bijvoet amplitude difference; Fþ � F�

F Friedel averaged amplitude
FA Structure-factor amplitude of heavy-atom substructure;

ðA2
heavy þ B2

heavyÞ1=2

Iþ, I� Friedel-related intensities
Iþobs, I�obs Friedel-related intensities with an added random error
�2

I Variance of additive error on intensities
�I Bijvoet intensity difference; Iþ � I�

Nheavy No. of heavy atoms
Nlight No. of light atoms
flight Form factor of light atoms
fheavy Form factor of heavy atoms
f 0heavy Dispersive correction on form factor of heavy atoms
f 00heavy Anomalous correction on form factor of heavy atoms

d* The inverse resolution
� f 00heavy/(fheavy + f 0heavy)
��(d*) Term accounting for geometric regularities in average

intensities
�2

light Expected intensity owing to light-atom part of total structure
�2

heavy Expected intensity owing to heavy-atom part of total
structure

Nð�; �2Þ The normal distribution with mean � and variance �2

BWil, heavy,
BWil,light

Wilson B value for light and heavy atoms

Alight, Blight Real and imaginary part of the light-atoms (protein) structure
factor

Aheavy, Bheavy Real and imaginary part of the heavy-atom structure factor
Aheavy, error,

Bheavy, error

A complex error vector modelling substructure errors

Aobs
heavy;Bobs

heavy Real and imaginary part of the heavy-atom structure factor,
including an error term

D Luzzati D value
q Heavy-atom substructure error-control parameter
Q(d*) A function describing the E(I/�I) behavior as a function of

resolution
Measurability

(this paper)
See equations (29) and (30)
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Eðj�FjÞ ¼ 2�

�
½EðF2

AÞ�1=2: ð1Þ

� is equal to the ratio of the imaginary and real parts of the

form factor of the heavy atom and FA is the structure-factor

amplitude of the heavy-atom substructure without the

anomalous correction (see Table 1). Taking into account the

effects of geometric regularities (Zwart & Lamzin, 2004) in the

heavy-atom substructure on the average intensity and

assuming a Wilson distribution on FA, this results, for a

substructure containing a single type of heavy atom, in

(Appendix A)

Eðj�FjÞ ¼ 2

�1=2
fNheavyf 002heavy½1þ �heavyðd�Þ�g1=2: ð2Þ

The expectation value of the average amplitude is equal to

EðFÞ ¼ �
1=2

2
fNheavyf 2

heavy½1þ �heavyðd�Þ�
þ Nlightf

2
light½1þ �lightðd�Þ�g1=2; ð3Þ

where

�� ¼ E½sinð2�ad�Þ=ð2�ad�Þ�a: ð4Þ
a is a bond length between two atoms in the heavy-atom or

protein model. The expectation value in (4) is obtained by

averaging over all interatomic distances in a given model. d* is

equal to the inverse resolution.

The expected Bijvoet amplitude ratio is thus

Eðj�FjÞ
EðFÞ ¼

4

�

Nheavyf 002heavy½1þ �heavyðd�Þ�
Nheavyf 2

heavy½1þ �heavyðd�Þ� þ Nlightf
2
light½1þ �lightðd�Þ�

( )1=2

:

ð5Þ
(5) differs from the expression given by Shen et al. (2003) by

inclusion of a correlation term for both the light-atom and

heavy-atom components and by the fact that B values of the

heavy-atom substructure are assumed to be equal to those of

the protein atoms. Inclusion of a term accounting for a

possible B-value difference between protein and heavy atoms

is straightforward, however, and has been omitted for clarity.

In (5) equal atoms for the light atoms are assumed rather than

an average form factor as used by Shen et al. (2003). In

practice however, Nlightf
2
light is replaced by (Weeks et al., 2005)

Nres½5:0f 2
Cðd�Þ þ 1:2f 2

Nðd�Þ þ 1:5f 2
Oðd�Þ þ 8:0f 2

Hðd�Þ�; ð6Þ
where f�ðd�Þ are the scattering factors for carbon, nitrogen,

oxygen and hydrogen, respectively, and Nres is the number of

residues.

Note that the expectation value (5) differs from the

expectation value given by Hendrickson & Teeter (1981) or

Hendrickson & Ogata (1997), who define the Bijvoet ratio in

terms of the ratio of root mean squares rather than absolute

values.

For an economical use of symbols and clarity of the

resulting expressions, B-value corrections are omitted and

equal atoms are assumed throughout the rest of this paper.

However, in subsequent computations B-value corrections

and substitution (6) are used.

3.2. The expected value of the absolute Bijvoet intensity

difference

The probability distribution and expectation value of the

modulus of the Bijvoet difference has been derived by

Parthasarathy & Srinivasan (1964), who showed that the

distribution of a normalized form of the Bijvoet intensity

difference denoted by x,

x ¼ jIþ � I�j
4ðP f 2

light

P
f 002heavyÞ1=2

ð7Þ

is distributed according to

pðxÞ ¼ 2 expð�2xÞ: ð8Þ
The expectation value of x is then 1

2 and thus (with |�I| =

|I + � I�|)

Eðj�IjÞ ¼ 2ðP f 2
light

P
f 002heavyÞ1=2: ð9Þ

Under an equal atom assumption for both the sets of light-

atom and heavy-atom groups, the latter expression simplifies

to

Eðj�IjÞ ¼ 2flightf
00
heavyðNlightNheavyÞ1=2: ð10Þ

It must be noted that the underlying assumption in this model

is that the number of heavy atoms is large enough to ensure

that the structure-factor amplitude of the heavy-atom

substructure is distributed according to a Wilson distribution.

For substructure containing a small number of heavy atoms

(up to three), specific distributions are available (Parthasar-

athy & Srinivasan, 1964). In this work, it is assumed that the

structure-factor amplitudes of the heavy-atom model follow a

Wilson distribution.

3.3. Bijvoet intensity ratios

A logical use of (10) would be in the estimation of the ratio

of the average absolute Bijvoet difference and the average

intensity,

EðjIþ � I�jÞ
E½12 ðIþ þ I�Þ� ¼

2flightf
00
heavyðNlightNheavyÞ1=2

Nlightf
2
light þ Nheavyf 2

heavy þ Nheavyf 002heavy

: ð11Þ

A simplified form of (11) has been derived by Einspahr et al.

(1985) (equation 2) on the basis of the Crick & Magdoff (1956)

approximation.

The Bijvoet ratio, denoted by �, in the definition of

Zachariasen (1965) and Parthasarathy (1967), is equal to

� ¼ jI
þ � I�j

1
2 ðIþ þ I�Þ : ð12Þ

The derivation of the expectation value of �, the expectation

value of a ratio, is less straightforward compared with the ratio

of expression values (11) owing to the dependence between

numerator and denominator. The derivation given by
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Parthasarathy (1967) results, after an equal-atom approxima-

tion, in

Eð�Þ ¼ 4flightf
00
heavyðNlightNheavyÞ1=2

Nlightf
2
light þ Nheavyf 2

heavy

: ð13Þ

The latter expectation value has been obtained using the

approximation that the contribution from f 00heavy to the mean

intensity can be neglected. The cumulative distribution func-

tion of the Bijvoet ratio has been derived by Parthasarathy &

Parthasarathi (1973). It is very straightforward to incorporate

�(d*) and B-value correction terms in (10), (11) and (13),

which are omitted for brevity but are included in subsequent

computations. From an experimental point of view, (13) is

more useful than (5) and (11) as it indicates the expected

signal in a randomly chosen reflection. Although (11) and (13)

give an indication of the strength of the anomalous signal, the

number of reflections with a significant Bijvoet difference

might be a more useful quantity to assess the feasibility of a

SAD experiment, as this is directly related to the number of

reflections used in modern direct-methods programs to solve

the substructure.

3.4. The measurability

A quantity related to the Bijvoet intensity ratio is the

measurability M(�0, z0) (Parthasarathy & Parthasarathi, 1974,

1976; Parthasarathy & Ponnuswamy, 1976, 1981a,b; Sekar &

Parthasarathy, 1987; Velmurugan et al., 1979; Velmurugan &

Parthasarathy, 1984). A measurable Bijvoet difference is

defined as a Bijvoet intensity ratio � (12) larger than a given

value �0, while the smallest intensity of the (normalized)

intensity pair (I +, I�) is larger than a given value z0. The

percentage of reflections that fulfill both latter conditions is

denoted as the measurability. A graphical interpretation of the

measurability is depicted in Fig. 1. The measurability estimate

differs from the Bijvoet intensity and amplitude-ratio esti-

mates in a sense that it tries to assess more directly the

feasibility of a SAD experiment in terms of estimating the

number of reliably measurable Bijvoet differences. A major

drawback of the published work on the measurability is the

lack of incorporation of the effects of experimental errors.

Interestingly, the measurability in the defintion by Partha-

sarathy & Parthasarathi (1974) was used by Rossmann in 1961

to assess the strength of the anomalous signal in early studies

on locating anomalous scatterers by anomalous difference

Patterson methods (Rossmann, 1961).

3.5. Post-data-processing anomalous indicators

In addition to the Bijvoet ratios and measurability esti-

mates, other indicators are used to assess the quality and

amount of anomalous signal. A prominent statistic is the

observed average anomalous signal-to-noise ratio,

hjIþ � I�j=ð�2
Iþ þ �2

I�Þ1=2i: ð14Þ

This statistic is often used to determine the resolution limit up

to which the anomalous signal can still be considered to be

significant (Mukherjee et al., 1989). The anomalous signal-to-

noise expression using amplitudes rather than intensities is

often used as well (Usón et al., 2003). The amplitude-based

signal-to-noise criteria are typically a couple of percent larger

than the intensity-based average anomalous signal-to-noise

ratio, especially at the high-resolution limit. Both the

intensity-based and amplitude-based anomalous signal-to-

noise ratio can be used to judge the strength of the anomalous

signal. For the amplitude-based criterion, a value of 0.8 or

lower indicates no anomalous signal and amplitude-based

anomalous signal-to-noise ratios larger than 1.2 indicate the

presence of significant signal (Sheldrick, 2004). A quantity

related to the average anomalous signal-to-noise ratio is the

number or fraction of Bijvoet differences whose absolute

value is larger than three times its estimated standard devia-

tion (Hädener et al., 1999). The latter criterion is very closely

related to the measurability as defined by Parthasarathy &

Parthasarathi (1974) as discussed in x3.4.

Another quantity frequently used to judge the strength of

the anomalous signal is the correlation between the anom-

alous difference between multiple data sets (Buehner et al.,

1974; Schneider & Sheldrick, 2002). Although this measure

was developed to be used for MAD data sets, the same statistic

can be computed for a SAD data set by artificially splitting the

collected frames into two distinct sets and computing the

correlation between the intensity differences in the two half

data sets (Evans, 2005). The major benefit of this criterion is

that it does not depend on the estimated standard deviations

of the individual intensities. The approach developed by Fu et

al. (2004) tries to assess the strength of the anomalous signal

by comparing the intensity differences between Friedel-

related centric and acentric reflections. Because the intensity

differences of Friedel-related centric reflections have a

theoretical Bijvoet difference equal to zero, the observed
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Figure 1
The measurability of Bijvoet differences is defined as the fraction of
Bijvoet differences that can be measured accurately. The regions
bounded by the blue lines and indicated by the asterisks have a Bijvoet
intensity difference and intensities large enough to be measured
accurately. Integrating the probability distribution (in red) in this area
will result in an estimate of the measurability of the Bijvoet difference.
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differences can be used to ‘calibrate’ the error model for the

acentric differences. In the HKL suite (Otwinowski & Minor,

1997), the presence of anomalous signal in the data is judged

by comparing the �2 values as obtained by merging the data

with and without averaging Friedel pairs. If a significant

anomalous signal is present, merging the Friedel-related pairs

will result in �2 values that are significantly larger than unity.

A related test to detect the presence of an anomalous signal is

the normal probability plot (Howell & Smith, 1992). The

normal probability plot method for the detection of anom-

alous signal tries to assess whether or not a set of anomalous

differences normalized by their estimated standard deviation

is distributed according to a Gaussian distribution with a unit

variance (Evans, 2005). Significant deviation from the stan-

dard normal distribution indicates the presence of an anom-

alous signal.

3.6. Limitations

Although the various Bijvoet ratios predict the expected

amount of anomalous signal with various degrees of accuracy,

these estimates fail to quantify the success of a subsequent

SAD phasing procedure. Clearly, not only the size of f 00 rela-

tive to the amount of experimental error plays a role, but the

normal scattering power of the substructure also influences

the resulting SAD phase probability distribution. The

influence of the known partial structure on the SAD phase

probability distribution is clear when looking at the maximum-

likelihood SAD function as given by McCoy et al. (2004). This

function consists of two components: a term describing a

symmetric bimodal phase probability arising from the

(trigonometric) SAD phase ambiguity and a term describing

the phase probability of the total phase given the fact that part

of the structure has been located. The latter term is known as

the Sim contribution (Sim, 1964) and skews the phase prob-

ability towards one of the modes of the bimodal phase

distribution. An excellent graphical illustration of this prin-

ciple can be found in McCoy et al. (2004).

An example of the importance of the Sim contribution is

illustrated in phasing a protein containing S atoms at a

wavelength of 1.5 Å (f 00 ’ 0.5) and comparing the resulting

phases with the SAD phases of a protein of similar size

containing the same amount of Se atoms at a wavelength of

1.0 Å (f 00 ’ 0.5). Because the selenium partial structure

provides a larger Sim contribution than the sulfur substruc-

ture, one expects better phases for the protein containing the

Se atoms.

The major contribution to the success of a SAD phasing

procedure is the accuracy of the data. Clearly, the more the

observed data resembles error-free data, the easier subse-

quent phasing procedures are (Weiss, Sicker & Hilgenfeld,

2001). The effect of errors in the data on the Bijvoet ratio as

well as measurability estimates have not been investigated

thoroughly, although Dauter et al. (2002) speculate that the

effects of errors on the observed Bijvoet amplitude ratio is

probably large. A similar observation was made earlier by

Einspahr et al. (1985). Attempts to include the effects of errors

on the expected Bijvoet ratios and measurability would result

in relatively complicated integrations that might not be

straightforward to solve via analytical methods. The difficul-

ties of an analytical method can be bypassed by using a

numerical approach.

4. Simulated SAD data

Structure factors are usually assumed to be distributed

according to a bivariate normal distribution in the complex

plane (Wilson, 1942, 1949). Inclusion of anomalous scattering

effects in this model is relatively straightforward and results in

the joint probability distribution of Friedel-related amplitudes

(Hauptman, 1982) rather than the Wilson distribution. The

real and imaginary components of both Friedel mates of the

total structure factor can be written as follows (see also Fig. 2),

Aþtot ¼ Alight þ Aheavy � �Bheavy; ð15Þ
Bþtot ¼ Blight þ Bheavy þ �Aheavy; ð16Þ
A��tot ¼ Alight þ Aheavy þ �Bheavy; ð17Þ
B��tot ¼ Blight þ Bheavy � �Aheavy ð18Þ

and

Fþ ¼ Iþ1=2 ¼ ½ðAþtotÞ2 þ ðBþtotÞ2�1=2; ð19Þ
F� ¼ I�1=2 ¼ ½ðA�totÞ2 þ ðB�totÞ2�1=2: ð20Þ

Alight, Blight, Aheavy and Bheavy denote the real and imaginary

part of the structure factor from the protein (light-atoms) part

and the heavy-atom substructure, respectively. The inequality

between F + and F� results from the imaginary component of
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Figure 2
Real and imaginary components of the Friedel-related structure factors.
Note that the f 0 contribution has been included in the form factor of the
heavy-atom model and is not explicitly shown owing to the nature of the
SAD experiment.
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the form factor of the heavy substructure, as can be seen from

Fig. 2. The real and imaginary components (A, B) of the

protein part and heavy-atom-substructure structure factors

can be assumed to be both distributed according to a normal

distribution centered on the origin, N(0, �2
x /2). The variance

terms for the protein part and heavy-atom substructure can be

written as (Giacovazzo, 1998; Zwart & Lamzin, 2004)

�2
light ¼ Nlightf

2
light½1þ �lightðd�Þ� expð�BWil;lightd

�2=2Þ; ð21Þ
�2

heavy ¼ Nheavyðfheavy þ f 0heavyÞ2
� ½1þ �heavyðd�Þ� expð�BWil;heavyd�2=2Þ: ð22Þ

A random structure factor can thus be generated by drawing

two random numbers from N(0, �2
light/2) and two random

numbers from N(0, �2
heavy/2). Using these random numbers in

(15)–(18) a pair of Friedel-related structure factors is obtained

from which amplitudes and intensities can be computed. A

single pair of Friedel-related structure factors then behaves as

if it was randomly picked from an X-ray data set from a

protein structure with a heavy-atom substructure.

4.1. Measurement and substructure errors

A random structure-factor amplitude generated by the

procedure outlined in the previous section can be regarded as

‘error-free’ with regard to the individual protein and heavy-

atom-substructure components. However, an inherent limita-

tion of experimental crystallography is the presence of

measurement errors. In order to simulate the effect of

experimental errors on the observable I+, I� pair, two random

numbers from N(0, �I) are drawn and added to the (I +, I�)

pair, while making sure the resulting ‘observed’ intensities are

positive. The latter positivity constraint is imposed to avoid

the need for a Bayesian update of these intensities (French &

Wilson, 1978). The variance of the simulated experimental

error is chosen in such a way that E(I/�I) = Q(d*), where

Q(d*) is a function describing the signal-to-noise ratio as a

function of the inverse resolution and, in this study, is para-

metrized by a exponential or polynomial function. If the

variance of the experimental error is chosen to be equal to

�2
I ¼

I�1=2

2Qðd�Þ ; ð23Þ

the average signal to noise is expected to be equal to the

stipulated value Q(d*). Note that in this way strong reflections

will have larger I/�I values than weak reflections, as is

expected from experimental data.

The now generated pair of ‘observed’ intensities Iþobs, I�obs is

used to compute Fþobs, F�obs by taking the square root of the

intensities. Associated standard deviations are estimated via

standard error-propagation techniques.

A fairly detailed error model has been published by Popov

& Bourenkov (2003) and is in good agreement with experi-

mental observations. Inclusion of this model will most likely

provide a more realistic error model of the intensities than the

rather approximate model currently adopted, but is beyond

the scope of this paper.

Modelling of substructure errors is carried out by adding a

complex error vector to the simulated error-free heavy-atom

part of the structure factor,

Aheavy;error ¼ N½0; ð1�D2Þ�2
heavy=2�; ð24Þ

Bheavy;error ¼ N½0; ð1�D2Þ�2
heavy=2� ð25Þ

and

Aobs
heavy ¼ DAheavy þ Aheavy;error; ð26Þ

Bobs
heavy ¼ DBheavy þ Bheavy;error: ð27Þ

For simplicity reasons, D is chosen to be equal to the classical

Luzzati model (Luzzati, 1952; Read, 1986),

D ¼ exp½�2�2q2ðd�Þ2�; ð28Þ
where the constant q is a parameter controlling the depen-

dence of D as a function of the inverse resolution d*. The

classic interpretation of q is related to an error in positional

parameters, but should in this case rather be seen as a flexible

way of modelling other errors not accounted for in the simu-

lations but which are present in the heavy-atom refinement

and subsequent phasing.

4.2. The ease of substructure solution and SAD phasing

As a result of the described simulation procedure, the

structure factor of the heavy-atom substructure and a pair of

‘observed’ Fþobs, F�obs amplitudes is obtained. The structure

factor of the heavy-atom model and the ‘observed’ amplitudes

can first of all be used to compute the correlation coefficient

CCA between the absolute anomalous amplitude difference

|�F | and the heavy-atom structure-factor amplitude, FA. For

error-free data, this correlation coefficient is estimated to be

equal to 0.692 (see Appendix B). Measurement errors on the

data will tend to lower this correlation coefficient and possibly

obscure the detection of heavy atoms if the correlation co-

efficient is too low. Although SHELXD uses a weighted

correlation coefficient (Schneider & Sheldrick, 2002), weights

are omitted in the calculations, corresponding to a run of

SHELXD with the keyword CCWT 0. In practice, successful

SAD phasing correlation coefficients lie roughly between 0.20

and 0.65. The successful identification of a solution produced

by SHELXD also depends, especially for low correlation

coefficients, on the contrast between a solution and clear non-

solutions and possible consistency between positional para-

meters obtained in independent solutions (Grosse-Kunstleve

& Adams, 2003). However, both these criteria of identifying a

possible substructure solution cannot be obtained via the

described simulation method. Nevertheless, a rough indication

of the expected value of the correlation coefficient is useful, as

it will indicate the ease of the substructure-solution process.

Predicting the results of a SAD phasing procedure is

possible because the total ‘observed’ amplitudes and heavy-

atom structure-factor components are available from the

simulation. Phasing is carried out by the maximum-likelihood

SAD function as outlined by McCoy et al. (2004). Estimates of

figures of merit in resolution bins can be obtained by phasing

each simulated reflection and averaging the estimated figures
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of merit (Blow & Crick, 1959) over all reflections in the given

resolution bin. If desired, the quality of the resulting SAD map

can be quantified by the correlation coefficient, computed in

reciprocal space, of the experimental map to the final map

(Lunin & Woolfson, 1993).

The success of a subsequent solvent flattening to improve

phases will largely depend on the solvent content and on the

information content of the phase probability distribution.

Another important prerequisite for the success of solvent

flattening is the need for a reasonably well defined solvent

mask. Again, the success of a subsequent solvent flattening is

impossible to predict via the described simulation procedure,

as density-modification techniques rely heavily on the corre-

lation between phases. However, the figure of merit is a much

clearer measure of the potential success of phasing than an

estimated Bijvoet (amplitude) ratio only.

4.3. Numerical determination of Bijvoet ratios and

measurability

Numerical estimates of the Bijvoet ratios are obtained by

using resolution-dependent population-average equivalents of

(5), (11) and (13). In order to assess the quality of a SAD data

set, the definition of the measurability as described in x3.4 is

modified to include the quality of the data. A Bijvoet differ-

ence is defined as ‘measurable’ if the following two conditions

are met:

jIþobs � I�obsj
½�2

IðþÞ þ �2
Ið�Þ�1=2

� 3 ð29Þ

and

min½Iþobs=�IðþÞ; I�obs=�Ið�Þ� � 3: ð30Þ
The expected measurability is equal to ratio of the number of

measurable Bijvoet differences to the total number of simu-

lated Bijvoet differences. Note that for error-free data the

measurability is equal to 1. The measurability as defined above

can thus be seen as a combination between the ‘classical’

measurability (Parthasarathy & Parthasarathi, 1974) and the

anomalous signal-to-noise criterion as discussed in x3.5.

Combing the condition (29) with (30) has the benefit that

potential outliers are not included in the summary statistics

describing the quality of the anomalous data set.

The definition of measurability that includes experimental

errors is close to the criteria used in selecting Bijvoet differ-

ences in the SAD substructure-solution process (Mukherjee et

al., 1989; Blessing & Smith, 1999).

5. Results and discussion

The described routines have been implemented in a Python

script (http://www.python.org) in such a way that the char-

acteristics of the protein and heavy-atom model as well as

parameters controlling the error model can be given upon

input. In the following paragraphs, the Bijvoet ratios are

determined numerically and compared with the analytical

expressions and real data. Finally, results of the simulations

are compared with experimental data. The � light term used in

the simulations has been determined from 20 good-quality

X-ray data sets, in a similar manner to that described by Zwart

& Lamzin (2004).

5.1. Bijvoet intensity ratios and the effect of experimental

errors

To validate (5), (11) and (13), a simulation has been carried

out for a hypothetical protein containing 250 residues and six

Se atoms. The B value for the protein has been set to 20 Å2,

whereas the heavy-atom substructure has a B value equal to

18 Å2. The value of f 0 and f 00 were set to �4 and 5.5 e,

respectively. No geometric regularities in the heavy-atom

substructure were assumed, resulting in �heavy(d*) = 0. The

error on the intensities have been set to hI/�Ii = 400

throughout the resolution range. The results of the simulation

are depicted in Fig. 3. Although the numerically obtained

estimates of h�Fi/hFi and h�I/Ii follow the results of (5) and

(13) closely, the ratios are overestimated, especially at high

resolution. The derivation of (11) involves fewer approxima-

tions than those needed to obtain (5) and (13) and matches the

simulated data rather well.

In order to show the effects of errors on the expected

Bijvoet ratio, four simulations have been carried out. In all

four cases, the hI/�Ii at 10 Å was set to 40. The hI/�Ii at 2.5 Å

was chosen to be 39, 10, 2 and 0.5 in the four different simu-

lations. hI/�Ii was set to decrease exponentially from the low-

resolution shell to the stipulated value at 2.5 Å. The results of

the simulation are shown in Fig. 4. Clearly, the effect of errors

on h�Fi/hFi is enormous, suggesting these types of plots are

not very indicative of the amount of anomalous signal within a

data set. However, a more intuitive feeling of the quality of the

anomalous data is obtained from a plot of the estimated

measurability (Fig. 5), correctly showing the falloff in

measurable Bijvoet differences as a function of resolution.

5.2. Sulfur versus selenium SAD

A simulation was carried out on a hypothetical protein

consisting of 250 residues and containing six methionines. The

success of a possible S-SAD experiment at Cu wavelength is

gauged by running the simulation assuming a nominal reso-

lution of 2.0 Å. hI/�Ii in the lowest resolution shell (at 10 Å) is

assumed to be 80, whereas the hI/�Ii at 2.0 Å is assumed to be

equal to 4.0. The Wilson plot B value of the protein part was

chosen to be equal to 20 Å2 and the B value of the heavy-atom

substructure was set to be 18 Å2. The simulated hFOMi as a

function of resolution is shown in Fig. 6.

Using the same set of parameters as in the previous case,

but changing the heavy-atom type to selenium and assuming

that data wre collected at 1.0 Å, where f 00 ’ 0.5, larger hFOMi
values were found compared with the sulfur case (Fig. 6). The

improvement in phasing is ascribed to the larger Sim contri-

bution of the selenium substructure in comparison to the

sulfur substructure.

Increasing f 00 to 5.5 e for selenium and to 1.4 e for sulfur

gives substantially better phases (Fig. 6). Note that the
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expected figure of merit is increased at the resolution where

the protein Wilson plot is at a minimum (d* ’ 1/6 Å�1). This

increase can be explained by the notion that at that particular

resolution range the Sim contribution of the partial structure

is increased because � light(d*) is at a minimum. The sharp drop

in hFOMi at d* ’ 1/4.5 Å�1 is explained in a similar fashion:

� light(d*) is large, which effectively decreases the fractional

contribution of the substructure to the total expected intensity,

resulting in a decrease in the Sim contribution.

5.3. Test data set Jia-peak

An X-ray data set, denoted by Jia-peak, of thioesterase II

crystals from Escherichia coli (Li et al., 2000) collected at the

Se-peak wavelength was used in a comparison with the results

of a simulation. The protein consists of 572 residues and has a

total of eight Se atoms. The values of f 0 and f 00 were estimated

to be �3.6 and 5.4 e, respectively. The data extend to 2.5 Å

and have a Wilson B value equal to 24 Å2 (Morris et al., 2004).

The average B value of the Se atoms was assumed to be equal

to 20 Å2. The hI/�Ii was 40 at 10 Å and 10 at 2.5 Å. A poly-

nomial curve was fitted to describe the behavior of hI/�Ii as a

function of resolution. A simulation with parameters speci-

fying the global statistics of the data set and the protein and

substructure content was carried out. Resulting measurability

and h|�I |i/hIi plots are shown in Figs. 7 and 8. Although

the measurability estimates are reasonable, a significant

disagreement between the observed and predicted values is

present at low resolution. This is most likely to be a conse-

quence of the simplistic nature of the assumed error model

on the intensities in the simulation. Note that the ‘dip’ in

h|�I |i/hIi is located at the resolution where the Wilson plot

has a local maximum, as discussed in the previous section.
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Figure 5
Measurability for four data sets with increasing error. The hI/�Ii at 10 Å
was set to 40 for all data sets and diminishes exponentially to 39 (in blue),
10 (in green), 2 (in red) and 0.5 (in black) at 2.5 Å.

Figure 6
hFOMi for a 250-residue protein containing six heavy atoms, either S or
Se, with different values of f 00. For f 00 = 0.5, the Se-SAD phasing is more
successful than the S-SAD phasing owing to the larger contribution of the
substructure to the total scattering power. See text for details.

Figure 3
Bijvoet amplitudes and intensity ratios for error-free data as obtained
numerically and through (5), (11) and (13). See text for details.

Figure 4
h|�Fi/hFi for four data sets with increasing error. The hI/�Ii at 10 Å was
set to 40 for all data sets and diminishes exponentially to 39 (in blue), 10
(in green), 2 (in red) and 0.5 (in black) at 2.5 Å.
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Figure 9
hFOMi for the Jia-peak data as obtained from SHARP (in black) and via
the described simulation procedure (in red). See text for details.

Figure 10
Measurability for the elastase data as observed in (in black) and as
estimated via the described simulation procedure (in red). See text for
details.

Figure 8
Estimated (red solid line) and observed (black solid line) h|�I i/hI i values
for the Jia-peak data set. The red dotted line indicates the expected value
of h|�I i/hI i for error-free data.

Figure 7
Measurability as a function of the squared inverse resolution for the Jia
data as observed (in black) and sd estimated by the described simulation
method (in red).

Figure 11
hFOMi for the elastase data as obtained from SHARP (in black) and via
the described simulation procedure (in red). See text for details.

Figure 12
Observed measurabilities versus the observed average intensity-based
anomalous signal-to-noise ratio for four data sets. At h|�I |/��Ii = 1.2 the
measurability is approximately 0.06. See text for details.
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To compare the simulated hFOMi values and the correla-

tion coefficient between the normalized |�F | and FA values,

the substructure was solved with SHELXD (Schneider &

Sheldrick, 2002) and refined with SHARP (de La Fortelle &

Bricogne, 1997). Substructure solution was straightforward

using a resolution truncation at 3.0 Å and resulted in a

correlation coefficient of 0.53. The estimated correlation

coefficient via the described simulation was equal to 0.50.

Phasing with SHARP resulted in an average figure of merit

equal to 0.48. The occupancies refined to around 0.8 and B

values around 28 Å2, slightly larger than the estimated Wilson

B value.

A simulation run with parameters specified for the deter-

mination of the Bijvoet ratios and measurability estimates and

q = 0 resulted in an overestimation of the figure of merit

(Fig. 9). Increasing the B value and decreasing the occupancy

to 0.8 as well as increasing q to 1.0 gave a better correspon-

dence to the SHARP results (Fig. 9).

5.4. Elastase + 2 Au

An atomic resolution X-ray data set of an elastase crystal

soaked in a solution containing KAu(CN)2 has an hI/�Ii equal

to 32 at 10 Å. The data set was truncated at 2.0 Å, where hI/�Ii
was equal to 23. Elastase contains 245 residues and this

particular derivative contains two Au atoms with an average

occupancy equal to 0.8. The B value for protein was equal to

10 Å2, whereas the heavy-atom model refined to 8.0 Å2 on

average. A comparison of the estimated and observed

measurability is shown in Fig. 10. The predictions of the

Bijvoet ratios are better than for the Jia-peak test case (results

not shown). As in the Jia-peak case, at the resolution where

the Wilson plot has a local maximum the measurability is

decreased significantly, indicating the importance of the � light

term in the analyses.

5.5. The relation between the measurability and the average

anomalous signal-to-noise ratio

As can be expected from (29), (30) and (14), the measur-

ability and the average anomalous signal-to-noise ratio are

closely related. Although the exact relation between these two

quantities can probably be determined analytically given a

particular (approximate) error model on the intensities, it is

more straightforward to visualize the dependence by plotting

observed measurabilities estimated in resolution bins against

the intensity-based average anomalous signal-to-noise ratio.

This has been performed for four data sets of an Se-MAD

experiment (Li et al., 2000) (Fig. 12). It is clear that a

resolution-cutoff criterion based on the average anomalous

signal-to-noise ratio is equivalent to that of the measurability.

For instance, cutting data at the resolution where h|�I|/��Ii is

equal to 1.2 would be equivalent to cutting the data at the

resolution limit where the measurability is 6%.

5.6. What is the limit?

It has been stated that the limit of SAD phasing is 0.6% or

lower for h|�F |i/hFi. This limit, known as Wang’s limit,

originates from an example from error-free data (Wang, 1985).

The key parameter to a successful SAD phasing lies in the

accuracy of the �I or �F values rather than on their expected

absolute values. In the unrealistic limit of perfect data, a large

protein and very small substructure, the average cosine of the

phase difference only depends on the phase difference

between the heavy-atom structure-factor component and the

total structure factor. Assuming that both these phases are

distributed uniformly on (0, 2�) and that they are indepen-

dent, the expected cosine of the absolute phase difference

(ignoring the Sim contribution) is approximately 0.6.

However, the value of f 00 and the size of the substructure does

determine the expected value of |�I|. If any errors are present,

the resulting phase distribution will be less informative

compared with the error-free case.

Although the presented analyses give a better clue of

whether or not a particular SAD phasing scenario is feasible, a

number of major factors determining the possible success or

failure have not been addressed. Factors such as the number of

heavy-atom sites and the solvent content cannot be taken into

account owing to the assumed independence of structure

factors. Another drawback is the use of the FOM to quantify

the success of a heavy-atom refinement. Although the FOM

does play an important part in characterizing the quality of the

resulting SAD map, it is less informative than the information

content of the phase probability distribution. The latter

statistic, expressed for instance in terms of the average

entropy (Shannon, 1948a,b) of the phase probability distri-

butions as a function of resolution, in combination with an

estimate of the solvent content, might be a better criterion to

predict the behavior of a subsequent run of density modifi-

cation.

6. Conclusions

The classic expressions for the expected values of the Bijvoet

difference as well as various Bijvoet ratios agree reasonably

well with the results from the simulation in the case of error-

free data, although the expressions for Eðj�FjÞ=EðFÞ and

Eðj�Ij=IÞ tend to slightly overestimate the results obtained

numerically. Out of the three Bijvoet ratios investigated, the

expression for Eðj�IjÞ=EðIÞ agrees best with the simulation.

However, if errors are present in the data then none of the

expressions for the Bijvoet ratio agree with the results of the

simulation. As an increase of errors in the amplitudes results

in an increase in the Bijvoet ratios, a plot of the Bijvoet ratio as

a function of resolution is virtually useless to identify the

strength of the anomalous signal unless it is accompanied by

an estimate of the Bijvoet ratio in the case of error-free data.

The early work on the measurability by S. Parthasarathy

and coworkers, although thorough, lacked the incorporation

of measurement errors in the analyses. Inclusion of measure-

ment errors, as carried out in the present work, resulted in a

modification of the definition of measurability. Using

measurability plots based on (29) and (30) to judge the quality

and amount of anomalous signal in a SAD data set is a

straightforward alternative to a Bijvoet ratio plot. A plot of
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the measurability versus the resolution can be directly linked

to the number of absolute Bijvoet differences significantly

larger than zero and thus gives a further indicator of the

quality of the data compared with the anomalous signal-to-

noise approach (14).

The simulation method presented here is a useful tool in

the investigation of the contribution of individual factors

governing the success of a structure solution via the SAD

technique. Although the method is only able to predict

statistics up to the stage of SAD phasing, the resulting

correlation coefficient CCA between normalized |�F | and FA

as well as the expected hFOMi are more indicative of the

possible success than simplistic Bijvoet ratio estimates.

In principle, the method can be extended to incorporate

other phasing methods such as MAD, similar to the work by

Phillips & Hodgson (1980). If a suitable model is available that

describes intensity changes originating from absorption or

radiation damage, their effects on the success of phasing can

also be investigated.

APPENDIX A
A1. The expectation values of |DF|

Under the usual approximations (a small anomalous

substructure in a large protein) the Bijvoet amplitude differ-

ence is approximately equal to (Kartha & Parthasarathy, 1965;

Parthasarathy, 1967)

�F ’ 2�FA sinð�Þ; ð31Þ
where � is the angle between the heavy-atom model and the

total structure factor. If the substructure is small with respect

to the total scattering mass, one can assume that � is uniformly

distributed on (0, 2�). However, if the substructure is a

significant part of the total scattering mass, the assumption of a

uniform distribution for � is incorrect [see, for instance, Fig. 2

of Dauter et al. (2002) and equation (28) and Fig. 2 of

Parthasarathy (1965)].

When assuming that � is uniformly distributed, the expected

value of the absolute Bijvoet amplitude difference is equal to

Eðj�FjÞFA;�
’ 2�EðFAÞFA

E½j sinð�Þj��; ð32Þ
with

E½j sinð�Þj�� ¼
1

�

R�
0

sinð�Þ d� ð33Þ

¼ 2

�
: ð34Þ

Noting that

EðFAÞ ¼ ð�2=2Þ�heavy; ð35Þ
one obtains

Eðj�FjÞ ’ ð2=�1=2ÞN1=2
heavyf 00heavy: ð36Þ

As the value of the expected amplitude is equal to

EðFÞ ¼ ð�1=2=2ÞðNlightf
2
light þ Nheavyf 2

heavyÞ1=2; ð37Þ

the value for the expected Bijvoet amplitude ratio then results

in (5) after taking into account effects arising from geometric

regularities in the protein and heavy-atom substructure.

The previous analysis does not take into account the case

when more than one chemical heavy-atom species is present.

Including the presence of multiple species of anomalous

scatterers in the derivation of the expected Bijvoet amplitude

ratio has been carried out by Olczak et al. (2003).

APPENDIX B
B1. The expected correlation between |DF| and FA values

Assume for simplicity that the FA values are normalized

[EðF2
AÞ = 1] and that they are distributed according to a Wilson

distribution.

The correlation coefficient between |�F | and FA is equal to

CCA ¼
Eðj�FjFAÞ � Eðj�FjÞEðFAÞ

�j�Fj�FA

: ð38Þ

The individual moments are equal to

EðFAÞFA
¼ �1=2=2; ð39Þ

Eðj�FjÞ�;FA
¼ 2�=�1=2; ð40Þ

Eðj�FjFAÞ�;FA
¼ 4�=�; ð41Þ

Eð�F2Þ�;FA
¼ �2=2; ð42Þ

�j�Fj ¼ �ðð2� 4=�Þ1=2; ð43Þ
�FA
¼ ð1� �=4Þ1=2 ð44Þ

and thus

CCA ¼
ð4=�� 1Þ�

�ð2� 4=�Þ1=2ð1� �=4Þ1=2
ð45Þ

’ 0:692: ð46Þ
Note that CCA is independent of � and thus independent of

f 00. For real data, the value is decreased owing to the presence

of experimental errors.
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